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FINITE ELEMENT APPROXIMATION 
FOR EQUATIONS OF MAGNETOHYDRODYNAMICS 

MATTHIAS WIEDMER 

ABSTRACT. We consider the equations of stationary incompressible magneto- 
hydrodynamics posed in three dimensions, and treat the full coupled system of 
equations with inhomogeneous boundary conditions. We prove the existence of 
solutions without any conditions on the data. Also we discuss a finite element 
discretization and prove the existence of a discrete solution, again without any 
conditions on the data. Finally, we derive error estimates for the nonlinear 
case. 

1. INTRODUCTION 

In this work we study the equations of stationary incompressible magnetohy- 
drodynamics which describe the flow of an electric conducting material under the 
influence of a magnetic field. We treat the equations in a three-dimensional domain 
and with the same inhomogeneous boundary conditions as in [9]. In contrast with 
the results in [9], we derive the existence of solutions of both continuous and dis- 
crete problems without any conditions on the boundary data of the velocity. We 
also obtain an error estimate for the general nonlinear case, and not only for the 
case where the solutions of the continuous and discrete problem are unique. 

The main problem for this type of nonlinear equation with inhomogeneous bound- 
ary conditions is the fact that the corresponding homogeneous problem differs from 
the original problem not only in the right-hand side, but also in the nonlinear form 
on the left-hand side. This form contains additional terms with the continuation of 
the boundary conditions, which cause problems in the proof of the coercivity. We 
overcome this problem by the construction of suitable continuations of the bound- 
ary data. To obtain an error estimate in the general nonlinear case we reformulate 
the given equations as an operator problem which fits into the abstract framework 
of [2], and derive the error estimate by methods similar to those in [5] or [11]. 

The paper is organized as follows. In Section 2 we introduce some function 
spaces that are needed throughout. Section 3 is concerned with the presentation 
of the equations and the derivation of the weak formulation and the homogeneous 
problem. In Section 4 we construct a suitable continuation of the boundary data 
for the velocity, and derive an existence result without any conditions on the data. 
Section 5 deals with the finite element approximation of the equations, and we 
prove existence of solutions, again without conditions on the data. In Section 6 we 
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reformulate the equations of magnietohydrodynamics as an operator problem and 
derive an error estimate for the general nonlinlear case. 

2. NOTATION 

Let Q be a bounded domain with boundary F = &Q of class C11. We denote 
by Wkp(Q) and Hk(Q) the standard Lebesgue and Sobolev spaces equipped with 
norms fjVfjWk,p(Q) , jVjjkSj2 anid seminorms jVWkSp(Q), IVjk,Q (see [1]). We use the 
notation H k(Q) for vector-valued functions v: Q 1R3 with componenits in Hk (Q); 
the norm on Hk(Q) is given by the canonical Euclidean norm. For our purposes we 
need two subspaces of H1 (Q) that satisfy specific boundary conditions: 

H'(Q) .= {v C H1(Q): vlr = ?}7 

HX (Q):= P1- E H1(Q): (4 n)Jr r }. 

We also make use of the product spaces 

WV(Q) -H'(Q) x H (Q) 

Won (Q) H= H(Q) x H' (Q)7 

Wgq(Q) := {v E H1(Q): v = g on F4 x {E H1(Q): f n = q on F} 

with the usual norm 

f1(v, 4) 11w := (11v111 se + 1 i2s)X2 

Next we define 

Z(Q) := {v E Ho(Q): V 'v 0}, 

which is a subspace of the solenoidal functions, and a subspace of L2 (Q) 

La(Q): q C L2(Q): q= O} 

the space of L2-functions with zero mean value on Q. 
We also need the notation H-1(Q) for the dual space of H'(Q), and by (, 2 we 

denote the duality pairing between these spaces. The norm of H-1(Q) is defined 
as usual: 

sup (f, v)s 
vEH'(Q2) 

v#O 

For the boundary conditions we make use of the trace space 

H1/2(r) .= tVIr{ V C H1(Q)} 

and analogously for vector-valued functions H1/2(r). We denote their duals by 
H-1/2(r) and H-1/2(F), and the duality pairing by ( .)p. The norms in these 
spaces are defined in a canonical manner (see [9]). 
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3. EQUATIONS AND THE WEAK FORMULATION 

We consider the equations of stationary, incompressible magnetohydrodynamics 
in a domain Q E- R 3 with the described properties. The equations are given in re- 
duced form, i.e., the electric field E and the current density j are already eliminated 
from the original set of equations (for a detailed description of the origin of these 
equations see [12] and the references therein). The equations with the associated 
boundary conditions are the following: 

I- Azu+ >(u V)u+Vp- (V x B) x B f 

| 1 V u O in Q 
RfV x (V x B)-V x (u x B) O 

(3.1) V B O 
u g 

] 1 q on F. 
[(V x B) x n] - [(u x B) x n] kJ 

Here u denotes the velocity, B the magnetic field, and p the pressure. All variables 
have been nondimensionalized (see [9]). For the definition of the parameters M, N, 
and Rm, which mean the Hartmann number, the interaction parameter, and the 
magnetic Reynolds number, respectively, we refer again to [12] and the references 
therein. The function f belongs to H-1(Q). In order to allow a solution to system 
(3.1) the following regularity and compability conditions for the boundary data are 
needed: 

(3.2) g E H1/2(F) with g . n = O, 

(3.3) q E H/2 (F) with Jqz 0o 

(3.4) k E H-I/2(F) with k. n =, (k, l)r 0)O, (k, V4))r = 0 V4) E H2(Q). 

Remark 3.1. In problem (3.1) we have no Lagrange multiplier for the condition 
V . B = 0 from the physics. We will see that the system is nevertheless solvable 
because of the Helmholtz splitting of the space L2 (Q) (see Remark 3.4). F] 

Next we present the weak formulation of problem (3.1). For this reason we test 
the first equation of (3.1) with v E H'(Q), the second with X E L2(Q), and the 
remaining two equations with 'I E HX (Q). For use in Section 6 we also scale the 
equations and then obtain the following weak formulation (for details see [12]): 

(3.5) 

(Find (u, B) E Wggq (Q), p E L2 (Q) such that 
I a((u, B), (u, B), (v, x)) + b((v, B),p) = F((v, )) V(v, L() E Won(0) 

t ~~~~~~~b((u, B),7 X) = O VX E- Lo2(Q). 
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Here the various forms are defined as follows: 

ao((v, 'I), (w, 4)) 

= jVv.Vw+ {(V x P (v x P) + (v P)(V P)b 

a,((u, B), (v, '), (w, 4)) 

_N / [(u V)v] w-Rw n j {[(V x xi) x B] .w- [(V x l) x B] .v}, 

a ((u, B), (v, xF), (w, P)) ao a((v, xF), (w, P)) + a I ((u, B), (v, 4f)7 (w, k)), 

b((v, L), x) := - j(V v)x, 

F((v, ji)) := M2 f v + MKk, Plr)r. 

Remark 3.2. A useful property of the nonlinear form a1 is the so-called antisym- 
metry condition, i.e., for (u, B), (v, xI), (w, 4)) e W(Q) with V . u = 0, and at least 
one element of { u, v, w} from H (Q), the form a1 is antisymmetric with respect to 
its last two arguments: 

(3.6) al((u, B), (v, '), (w, )) =-a1 ((u, B), (w, ), (v, ')). D 

Remark 3.3. The equivalence of the weak formulation (3.5) and the system (3.1) 
was shown in [9]. The main tool there is that for every function B E H1 (Q) there 
exists a scalar function b e H2(Q) withV . Vb- V B and (Vb. n)lr = 0. D 

Remark 3.4. Note that in (3.5) the condition V . B = 0 is not formulated with 
the introduction of a Lagrange multiplier but with the term fQ(V x B) . (V x xI). 
It is then guaranteed with the compability condition (3.4) on k and the identity 
V x (V x b) = 0 for all b e H2(Q). D 

To conclude this section, we reduce problem (3.5) to a problem with homogeneous 
boundary conditions. We again use a result from [9] that allows us to split the 
velocity into a sum of a function that satisfies the given inhomogeneous boundary 
condition and a function that satisfies homogeneous boundary conditions. The 
same can be done for the magnetic field. We set 

u:= uo + u, uo c H1(Q) with uo = g on F and V uo=O in Q, ui H (Q)7 

B:=Bo+B7 Bo cH1(Q) withBo n=qonF 

andV Bo=VxBo=O, B EH'(Q), 

and so obtain the following problem: 

(3.7) 

r Find (u, B) e Won (Q), p c L2 (Q) such that 
a uB),(u,B),(v, @))+b((v,BP),p) 0VV F ) ( ) L Won (Q) 
t b((u, ~~~~~B), 7X) = ? VX - Lo2(Q). 
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Here, & and F denote the following forms: 

a((u, B), (v, 'I), (w, 4)) := a((u, B), (v, 'I'), (w, 4)) + a1 ((v, 'I), (uo7 Bo), (w, i)) 
+ al((uo7 Bo), (v, '), (w, f)), 

F((v, 'I)) F((v, 'I)) - a((uo, Bo), (uo, Bo), (v, @I)). 

The key point of Section 4 will be a judicious choice of ui and B. 

4. EXISTENCE OF SOLUTIONS WITHOUT CONDITIONS ON THE DATA 

Problem (3.7) fits into the abstract framework for nonlinear problems described 
in [5, Chapter IVA], so we can apply those results. In order to derive an existence 
result we mainly have to establish-apart from easy properties like the continuity 
of &, etc.-the following properties (see [51). 

1. The trilinear form a in problem (3.7) must be coercive, i.e., there exists a 
constant o > 0 with 

(4.1) &((v,7 'I), (v,7 'I), (v,7 ')) > al (v, 'I)w V(v, 'I) c Z(Q) x H (Q). 
2. The bilinear form b has to satisfy the inf-sup condition, i.e., there exists a 

constant f3> 0 with 

(4.2) inf sup b((v, I') , X) > 

X#o (v,'J')Ao 

3. The space Z(Q) x H (Q) must be separable, and the map 

(v,@x) E Z(Q) x H' (Q) lyae((v, x), (v, x), (w,4)) 

has to be weakly sequentially continuous on Z(Q) x H (Q), i.e., the following 
conclusion is valid for all (w, 4) E Z(Q) x H (Q): 

(V, 'I')m m'~oo (V, ') in Z(Q) x Hl (Q) 

et a((v,X @) m (V:7 4f) m (W: 7 ) et((V7 4f) (v,7 4) (w, )) 

Condition 2 is the well-known inf-sup condition of the Stokes problem, and prop- 
erty 3 is already established in [9]. Thus it remains to prove the coercivity of &. In 
[9], this condition has already been proven, but only with a smallness condition on 
the boundary data g for the velocity. This condition can be eliminated if we choose 
the continuation of the boundary data g in a suitable manner, as in Lemma 4.3. 
Before we do this, we need a technical lemma. 

Lemma 4.1. Suppose that the domain Q has a C1,1 -boundary F. Then there exists 
a constant c := c(p) > 0 with 

fll/d(.,F)lLP(Q) < Cl?7lWi,P(Q) VqS c WO' (Q), 1 < p < oo. 

Here, d(., F) denotes the distance from a point x to the boundary F. 

Proof. Using the smoothness of F and introducing a partition of unity, we need only 
to investigate the case where Q is the half-space R+ := {x = (X/, X3) E R3: X3 > 0}. 
In this case the function d becomes d(x, F) = X3. Because Co??(Q) is dense in LP(Q) 
(1 < p < oo), it is sufficient to check that 

j I/x3lPdx < c / q9/0&X3IPdx Vo E Co (R3) 
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This is an immediate consequence of the Hardy inequality (see [10]) 

10t(t)/tIP dt < I P) 0'(t) IP dt Vo c- Coo ((?, o)) O 

Remark 4.2. We have proven Lemma 4.1 only in the case where Q has a C11, 
boundary F. Indeed, this is not an essential restriction and we can prove with 
more technical effort Lemma 4.1 (and also Lemma 4.3) for domains which have 
only a Lipschitz boundary F (see, e.g. [7]). D 

We now come to the announced result for the continuation of the boundary data 
g. 

Lemma 4.3. For given g - H1/2(F) with the compability condition (3.2) there 
exists for any E > 0 a function uE G H1 (Q) with 

u. = g onr, V u, =o itn Q, 

(4~~~~~~~~~1 3)UE 1|L3(Q) < E119111/2,F- 
Proof. In [5] it is proven that there exists a function uo c H1 (Q) with 

(4.4) uo = g on F, V uo = 0 in Q, IIUOf11Q < gK11/2,F. 

For this uo there exists (see [5]) a vector potential '1o c H2 (Q) with the following 
properties: 

(4.5) uO = 0V x I0, xoxn= O onF, "1o0112,Q < CIIUO 1Q* 

For any T1 > 0 it is again proven in [5, Lemma IV.2.4] that there exists a function 
Or7 C C2(Q) with 

071 = I in a neighborhood of F, 

0?7(X) 0 if d(x,IF) > (TI) = e- 

00?7(x)/&xi < rj/d(x, F) if d(x, F) < 6(TI), 1 < i < 3. 

We construct the function ur, c H1 (Q) as follows: 

U?71 := V x (0?71Io) = VO? X 'O + O?7(V x '1o). 

= 
UI't7 = U,1,2 

From the construction we easily obtain 

Ur, = g on ] and V .u7 = V* (V x (0,,'o)) = 0. 

It remains to prove (4.3). For this purpose we consider the terms u7,1 and u,72 
separately. For u17,2 the following estimate holds: 

11U7 ,21 L3(Q) {JI Urq,2(X) 3dx } 

t (X, F) < 6(t,q)) 

r A ~~~~~~~~~~1/3 

(4.6) - {Jd(F)6(i) I 01 (X) (V X o (x)) l3 dx} 

< ci(meas{x c Q: d(x, F) < 6(T)})1/6 jV x IO IIL6(Q) 

< c2(meas{x c Q: d(x,F) < 6(TI)})1/6 |IT012,Q 

< c3(meas{x c Q: d(x,F) < 6(T)})1/6 g1 1/2,F 
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where we have used the Sobolev imbedding theorem H' (Q) - L`(Q), the H6lder 
inequality and the estimate (4.4). 

In order to treat u,1,, we have, as in Lemma 4.1, only to investigate the case 
where Q is the half-space Q := {(x', x:) c R'3: x' C R, x3 > 0}. Let us consider 
the functioni 07(x) definied by (6(7Q) as before): 

01 ~~~0 < X3 < 6(7-1)2, 

O7'(x) = o,(x:3) - 
n(6(?/)1x:j) ( - < 

t 0 otherwise. 

For the gradient of ;p, we have 

v;p,1 =- - e, (r;)2 < X:3 < (r;), 

an(I 

Vp,} x @() =- ~ (-\@(~). , ?x(11) 3 < X (,1). V~~011 
O 

IV 
J0I 

This iimiplies 

||U)1, I|L2(- 2) =| V(971 X XP L:3(Q) 

2 

< 7-1 I I qj(). i Wz, X0 3/Xi I I I,:3 o 2) - 

Taking (4.5) into account, we can conclude that To,i 0 on I' (i = 1, 2) and that 
T,j H I2(Q) n H( (Q). Therefore, using Sobolev's imbeddinog theorem W,2- e' (Q) 
W':3(S2) (see [1]), we can apply Lemmiia 4.1 (with p = 3) for TO,, (i = 1,2). IFor 
i = 1, 2 this yields the estimate 

ll'(o./:31IL:3(Q) << C .] 1IIO . W'2) I C511TO.71 2-S2 I< C611g911/2.1.- 

Thus, for u,j.i we obtain 

2 

(4-7) IIU-)/.111L-3(S) _< 7 1 I ' 0|(. i'X311ll,3i(Q) < _q7171l111/2.17- 
i=l 

Finally, we may choose rj := 17(E) small enough such that 

c3(meas{x E Q: d(x,F) ?< 6(7)})'/ ( + 71C7 < 6- 

Then the clesirecl inequality (4.3) follows immecdiately from (4.6) andc (4.7). D: 

With Lemma 4.3 we are niow able to establish the coercivity condition (4.1) 
without any smallness conditions oni the boundary data g of the velocity. 

Lemma 4.4. The trilinear formrl a fromrt (3.7) is coercime, i.e., there exists a con- 
stant a > 0 with 
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Proof. Using standard results, we infer that the following inequality holds for all 
(v, ) E Z(Q) x H (Q) (for details see [12]): 

e((v, I), (v, I), (v, I)) > ki IIv I2,Q + k2 'I'XpII 

(4.8) + M j[(v V)uo] v + Rm [(V x 'f) x ([] .uo. 

=(1 ) =(2) 

Next we treat the terms (1) and (2) in (4.8) separately. For (1) we have, by a 
generalized H6lder's inequality and the continuous imbedding of H1(Q) in L6 (Q), 

2 j [(v V)uo] v = N V)v] juo 

(4.9) Al2 
N IVIIL6(Q) IVVIIO,QIIUOIIL3(Q) 

< cl N |V||2QHUO L3 (Q) 

Similarly for (2), 

(4.10) Rm j[(V x 4) x I] uo < RmlIV x 'I'0,Q'I' IL6(Q) UolL3(Q) 

< C2Rm |I'I 1, Q 1UO 11L3(Q) 

Therefore, using Lemma 4.3, we can choose uo such that along with (4.9) and (4.10) 
the following inequalities hold: 

(4.11) ~~~~~~~(1) < ?||V||12 'Q, 
(4.12) (2) < ||||2Q, 

with - < min{kl, k2 } 
Thus, the desired estimate follows from (4.8), (4.11), and (4.12): 

&((v, I), (v, I), (v, I)) > (ki - e)| v2Q + (k2 - e) 11 ' iQ 

> a II (V, p) II W2V(v, T) E Z (Q) x H' (Q) 

with a := min{ki - ,k2- e}. D 

Lemma 4.4 leads to the following existence theorem. 

Theorem 4.5. For all functions f E H-1 (Q) and for all boundary data g, q, k 
which satisfy the regularity and compability assumptions (3.2)-(3.4), problem (3.5) 
has at least one solution ((u,B),p) E W'Vgq(Q) x Lo(Q). 

Proof. The theorem follows easily from the abstract results in [5] for nonlinear 
problems and the stated properties of the various forms (for details see [12]). D 

5. FINITE ELEMENT APPROXIMATION 

In this section we present the discrete approximation of problem (3.5). For 
convenience, we restrict the analysis of the case where Q is a convex polyhedral 
domain. For the approximation we choose finite-dimensional spaces Xh C H1 (Q), 
yh C H1(Q), and Soh C Lo(Q), and define the following spaces: Xh :=Xh nH (Q), 
Yh:= yh n Hn(Q), Wh := Xh x yh, and W1hn := Xh X Yh. The norms on these 
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spaces are induced by the analogous infinite-dimensional spaces. Finally, we define 
the space of the discrete divergence-free functions, i.e., 

Zh := {Wh E Xh: j(V. Wh)Xh = 0 VXh E Sh }. 

Note that, in general, Zh t Z(Q). Therefore we must slightly change the nonlinear 
form a1 in order to preserve the useful antisymmetry condition (3.6) also for discrete 
functions. Thus, we define 

(5.1) 
dl ((Uh, Bh), (Vh,Ph), (Wh, Dh)) 

1 1 
-al ((Uh, Bh), (Vh4'h), (Wh, ,?h)) - al ((Uh, Bh), (Wh, h), (Vh, 'h)) 2 2 

= 2N ] { [(uh . V)Vh]j Wh- [(Uh 
. V)Whl . Vh} 

- Rm j[(V X 4'h) X Bh] Wh + Rm j[(V X 4'h) X Bhl *Vh- 

It is easy to check that a1 and &i are identical for functions u E Z(Q). In addition, 
we now have, by construction, 

(5.2) &1((u, B), (v, 'I), (w, b)) =-&i((u, B), (w, 4), (v, xF)) 

on all of W1(Q) x W1(Q) x W2(Q). 
We also modify the form a and define for (Uh, Bh), (Vh, 'I'h), (Wh, h) E Wh X 

wh x Wh 

(53 ((Uh, Bh), (Vh, h), (Wh, Dh)) 

:= ao((Vh, h), (Wh, 'h)) + &1((Uh,Bh), (Vh, h), (Wh, 'h))- 

For the discrete weak formulation we need to approximate the essential boundary 
data g and q by functions gh E Xh r and qh C {('I'h . n)Ir: 'J!h E yh}. We then 
have the discrete problem (with I/Vhqh similar to W)gq(Q) in Section 2): 

(5.4) 

rFind (uh, Bh) E Wg,Vq,, and Ph E Sh such that 

& ((Uh, Bh), (Uh) Bh), (Vh, h))+b((Vh,Ph),Ph) =Fh((Vh,Ph)) V(Vh) Th) EVVh, 

I b((Uh,Bh),Xh) =0 VXh C S0. 

with 

(5.5) Fh((Vh) T4h)) =M2 f .Vh+M j k .Ih|r' 

Remark 5.1. For the discrete spaces Xh, Yh and Sh we choose finite element 
spaces. In order to obtain a stable approximation, we have to guarantee that 
the spaces Xh and Sh satisfy the discrete inf-sup condition 

b ((V h,4'h) X h) 
(5.6) inf sup h 

j|(Vh)Ph)||W|iXh|4O,Q /X/"ES (Vh,,'Jh)E1/~ On ,') v hl, 
Xh#O (Vh,Jh)#0 

with ,B> 0 and independent of h. C 
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Remark 5.2. In order to obtain error estimate (see Section 6) we have to make 
additional regularity assumptions on the boundary data g and q, namely 

(5.7) g E H3/2+E (Q), q E HC3/2+ (Q) 

As a consequence, g and q are continuous and we can choose for the approximation 
qh of q the interpolant of q at the boundary vertices. In order to get an existence 
result we have to construct the discrete function gh so that it satisfies the com- 
pability condition fr gh * n = 0. This leads to a construction which we will not 
present in detail, but which can be found in [6] and also in [12]. We note that this 
construction is only of theoretical interest, and can be neglected in maniy practical 
computations [8]. D 

Next we will derive an existence result for the discrete problem (5.4). For this 
purpose we closely mimic Section 4 by constructing suitable continuations of the 
discrete boundary functions gh and qh. We begin by stating a result from [9] 
without proof. 

Lemma 5.3. For any E > 0 there is a real number ho ho(E) > 0 such that for 
all h with 0 < h < ho and for all qh E {(('h n)Jr,: 1h E yh} there is a function 
Bh,2o E yh with 

Bh,o n = qh on F 

and 

||V x Bh,o0oX,Q < E and ||V*Bh o11o,Q< E. 

Moreover, there is a '2 > 0 such that 

||Bh,o0 1,Q < Y211qhhl/2,Fr * I 

For the construction of a discrete continuation of g;, we first define ug,, E H1 (Q) 
as the continuous continuation of the discrete boundary data gh with the following 
properties (see Lemma 4.3): 

(5.8) ug,l = g;, on F, V . ug,l = 0 in Q, 

and for a given r1l > 0: 

(5.9) ||Ug,l1 L3(Q) < r'q1JgJ9h1J/2,r and JJUg,l||1,Q < CJJghll1/2,rp 

In addition, it follows from the proof of Lemma 4.3 that ug,j has a small support 
in Q. 

To keep the exposition simpler we restrict ourselves for the moment to scalar 
functions. We also need some additional notation. Let Vh be the set of all vertices, 
.Ah,Q the set of all interior vertices, and N\E,,r, the set of all vertices on the boundary 
F of the finite element discretization. The vertices are denoted by xi, and the 
nodal basis functions belonging to each vertex by ,ui. Then we define Pi as the 
local L2-projection onto the support S. of /fj, i.e., 

Pi:P(Si) - )H(Si), 

u | 4 Piu with /(PUe- U)7F = O Vlr (E I- k(Si) . 
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Here Ik(Si) denotes the space of polynomials of degree k on 
S.. 

Our projection 
operator is a slightly modified interpolation operator of Cle'nent's type [4]: 

I1,: L2(Q) - xh 

(5.10) u I : (P2ziu)(xi)ui + g 9h(Xi),Ui. 

On the one hand, this operator preserves the approximation properties of the stan- 
dard Cle'nent operator, and on the other hand the condition ug,, = g9, on F, i.e., 
I,ugh, = g9, on F. 

Lemma 5.4. There exists a constant c > 0 which is independent on h such that 
for UvZ e H?h(Q) the following interpolation estimate holds: 

IIh Ug,,- Ug,9hI k| Q < ch7n ku 129 I71,Q ) 0 < k < m. 

Proof. Denote by H: L2 (Q) Xh the usual Cle'ment interpolation operator (see 
[4]). Then we have 

1h Ugh - 'Ug, Ik,Q < IIhUg1, - HUgh, k,Q + 11u912. - ZUgJ lk,Q 

(5.11) < IhUlg; -H HZlt, Ik,Q + Clhm I9, g17 mQ 

=(1) 

For the estimate of the term (1) in (5.11) we need the following result for an 
arbitrary boundary simplex T E %,r: 

(5.12) lIhUgh - Hu T 
2 

C2h(m) E Zt 12 
9/t k T 

C2hlughEghS 
xiEAri, ,r nT 

which can be established as follows. From the construction of I;7 we have 

IhZtg,h, - HUg = 3E (Piz9u) (Xi)bi + E gh(Xji)Pi- E (PiUgz,)((Xi)Ai 
Xi X/2. X ~x i EAr,,, r x i E A1l 

- E3 {fg,(Xi) - (Piz9,g)(xi)}1pi. 
xi EA1,,r 

Thus for an arbitrary T E 'Thr we obtain 

|IhUg,h - I gk,T = 3 {g,(xi) - (Piug")(xi) 
xi AX,, ,r,nT k,T 

< I {g2 (Xic) - Ug911 (xi) }i 
(5.13) xi Egh,r,T =0 k,T 

+ 13 { (Pi29,1)(Xi)- Zt1J(Xi)J}i k,T 

2xi.EArl,,,r 

? c3hTk{rneas(T)}l/2 |3 (Piug, ) (x )-g (xi) 
xi E,lr nT 
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For the term I(Piulgh - Ugh) (xi) the following estimate holds (for details see [12]): 

( (Pitgh) (Xi) - Ugh (Xi) I < 11 (PiUg9 - Zg)IT|L??(T) 

? C6h-3/2{ P6ht911 - | I 0 T+ hT |BUg9- -9h 2,T } 

Here, x2 is an arbitrary vertex of a boundary edge T C T E Th,r. 
From (5.13) and (5.14) we obtain with the regularity assumption for finite ele- 

ments (see [3]) and properties of the L2-projection (see [4]): 

IhUgh -Hugh k,T ? c7hT/hTk E I (Piu9g) (x) - z91g (x) I 
xiEmS1,,r nT 

<?cs h3/2 hIk E hT /T{ PitUgh g9h IOT + h: I Il X9h -911 1 T 
Xi Ah , r, nT 

< cghm 
- k g 

I 
fl 2 

? c9h~JY~T { x91p Im,T } 

xiEA(,,,r nT 

Then (5.12) follows easily with c2 = c9. 
With (5.12) we further obtain 

IhUgh - Hu9h I k = 3 |IhUg,, -rU9h k,T 

TEThl 

T E3 IhEt9' 1 - ,,9hk,T 

TCTh ,r 

?<CI0 h3 2jmk) I u S2 < clo E h~T( g uh Im Si 
(5.15) XiGMh,r 

< cllh2(m-k) S 2U9hLi,T 

XiGMh,Fr 

< Cl2h 2(mk) E gi n2 

TCTh ,r 

= Cl2h2(m-k) IUh Im. 

Finally, (5.11) and (5.15) yield the claimed estimate. D 

FRom Lemma 5.4 we have the following corollary, which we present without proof 

(a proof can be found in [12]). 

Corollary 5.5. Denote by uZh E H1(Q) the continuation of gh E XhIr as in (5.8) 

and by Ih the projection operator defined in (5.10). Then for every n1 > 0 there 

exist two constants C1, C2 > 0, both independent of h, such that 

(1) ||IhUghH|l,Q < Cl Ilgh|1/2,r, 

(2) 11IhUgh 11L3(Q) < C2(rql + h /2)IIghfl1/2,i- LII 
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We define Uh,g := IhUgg, This function has the following properties (r7i > 0, 
cl, c2 two constants independent of h): 

(1) Uh,gh = gh on F, 
(2) fr Uh,gh * n = 0, 

(5.16) (3) || Uh,9h||11,Q < Cl ||9hJ||1l/2,r ) 

(4) |lUh,g9h1L3(Q) < C2(rq + h /2) 19hJ11/2,r) 

(5) Uh,gh has a small support in Q. 

Finally we construct from Uh,gh with a Stokes-projection a solenoidal continua- 
tion of the discrete boundary function gh. 

Lemma 5.6. For all ? > 0 there is an ho:= ho(8) > 0 such that for all 0 < h < ho 
and all gh E Xh Ir as in Remark 5.2 there is a function Uh,O E Xh with the following 
properties (ci > 0 a constant independent of h): 

(1) fQ(V - Uh,O)Xh = 0 VXh E Soh- 

(2) Uh,O = gh on F. 
(3) ||UhO ||1,Q < C1 |gh 11/2,F* 

(4) JlUh,0olL3(Q) ? 11ghJ1/2,r- 

Proof. Let Uh,gh C Xh be the continuation of gh as in (5.16). We denote by 
Uh E Xh, Ph E Sh the solution of the following well-posed Stokes problem: 

UFind Uh E Xh and Ph E Sh such that 
(5.17) {Vflh nd L EX ) uh, Vvh)L2 - (V Vh,Ph)L2 = (VUh,gh, Vvh)L2 VVh X0 

(V *Uh, xh)L2 = (V * Uh,gh, Xh)L2 VXh C So. 

Here (, )L2 denotes the usual L2-scalar product. Define Uh,o := Uh,gh -fh It 

follows from (5.17) that Uh,O is discretely solenoidal and, in addition, 

Uh,O I r = Uh,g,, I r = gh - 

It remains to prove (3) and (4). FRom an a priori estimate for the Stokes equations 
we know that (see [5]) 

(5 . 18 ) I IJUh I IJ1,Q + IIPh I0,Q < C2{ ||VUh,gh 110,Q + ||V * Uh,gh 110,Q} 
< C3 11Uh,gh 1 1,Q 

This immediately yields 

(5.19) JJUh hJ1,Q < C3 1 Uh,gh || 1,Q 

Together with (5.16(3)) and (5.19) this yields (3): 

I|Uh,O011,Q = JlUh,gh - hJJ1,Q < I|Uh,g, 11,Q + JJUhJJ1,Q < Cl 1ghJ11/2,r- 

For the L3-estimate of Uh,o we need an estimate in the L2-norm for Uh. For this 
purpose, we solve the following problem: 

(Find u E Ho(Q) andp ECLo (Q) such that 

(5.20) (Vu, VV)L2 + (V. V,p)L2 = (Vlih) V)L2 Vv E HC(Q) 
I - (V U, X)L2 = 0 VX E L(Q). 
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Therefore for arbitrary Vh E Xh, Xli e S0 with v := Uh, X :-Ph we obtain 

IUh O', Q (V(U - Vh), VUih)L2 - (V (U - Vh),Ph)L2 + (V . Uh, (P -Xh)2 

+ (Vlh,, Vv; )L2 - (V . Vh, Ph) L2 + (V * Uh, Xh)L 2 

(V(u - Vh), V1?h)L2 - (V. (U - Vh),Ph)L2 + (V U 1h, (P - Xh))L2 

+ (VUh,g,,l V(Vh - U))L2 + (V . Uh,g,, (XI, -P))L2 

+ (VUh,gi,, VU)L2 + (V * UhI,g,l,P)L2 

(5.21) ? {u - Vh 11 ,Q | Uh 1|1 ,Q + |U - Vh 1|1 S2 ||Ph IO,Q + flUh 11 ,Q IIP - Xh O,Q 

+ I fUhlg,|1,Q |Vh - U|1S,2 + IIUI-t, g111QIIXh -P11O,Q} 

+ (VUh,g,,, VU)L2 + (V . Uhglg,, P) L2 

? c4h{ 1fh 1 i,Q + |lPh,||O,Q + ||Uh,g,jK1l,Q}{ IUll2,Q + IIPII1,Q} 

+ (VUh,g,,, VU)L2 + (V * Uh,,g,t,P)L2. 

=(1) 

Define T Vu + pI. Because of (5.16(5)) there exists a real r12 > 0 with 

SupP(Uh,g,) C ">12 := {x E Q: d(x,F) < r12}. 

We then obtain 

(1) = (VUh,g,l,T)L2 = j(VUh,g,, ; )Xr,., 

(5.22) < C5jIVUhi,g, IO,QIITIIL6(Q) IXi'72 IIL3(Q) 

< CGflUh,,g,|, |,Q{||UJ 2,Q + WIPIII,Ql'ql 
3 

where we have used a generalized Holder inequality and the Sobolev imbedding 

theorem H1 (Q) -*> L6(Q). Then the H2-regularity of problem (5.20) and estimates 

(5.21), (5.22), and (5.18) yield 

(5.23) jjiihiHO,Q ? C7 
O + fl<1~ ?C8(h +q 17/3~hg~H, 

( 5 . 2 3 ) I- I U I 12,!Q + I PI I 1 51 

Finally, (5.19), (5.23), and (5.16) imply 

||Uh,O||L3(Q) < 1U2hIIL3(Q) + IIUh,gj, L3(Q) 

< C9| Uh OQ U L4 (Q) + I Uh, I I L3 (Q) 

< ClO| Uhl |O/QIhhl1/Q + Uh,gh1IL3(Q) 

< cii{(h + p1l/3)1/2 + (hl/2 + r7i)} gh 1/2,r7 

Thus we may for arbitrary E > 0 choose r71, r12 and ho > 0 with 

cil{(ho + p12/3)1/2 + (hlj/2 + r <i)} K ?. 

This yields the estimate (4) for every 0 < h < ho. O 

In order to obtain an existence result for the approximate problem (5.4) we 

continue as in Section 4. With the continuations of the discrete boundary data gh 

and qh we formulate a discrete homogeneous problem analogous to problem (3.7) 

and then have to show the analogous properties (for example, the coercivity of &a) 

as in the continuous case. We refer to [12] for a detailed presentation of this process, 
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and state only the maini existenice result. Note that for the approximate problem, 
we also have existence of solutions without any conditions oni the boundary data. 

Theorem 5.7. The approximate problem (5.4) has for every sufficiently small 
h > 0 and for every futnction f E H-1(Q), for every boundary function k with 
(3.4) and for all discrete boundary functions gh E XhIf with f2 gh n- 0 and 

qh {(4'; * n)lr: 4h E yh} at least one solution ((Uh,,B;), p) E W' ' X S/i. D 

We finish this section with an error estimate for the linear case which will be 
needed for the error estimate in the genieral nonlinear case in the next section. 

Let us forinulate the linear problems 

(5.24) 

Find (u, B) E Wgq (Q) and p C LQ (Q) such that 

ao((u, B), (v, 4)) + b((v, 4),p) = F((v,4')) V(v, 4) c W(,,. (Q), 
{ b((u, B), X) = 0V 

2 
(Q)7 

and 
(5.25) 

Find (Uh, BO) E WI- and PI SO" such that 

ao((Uh, Bh), (Vh, h)) + b((Vh, 4h),Ph) = F((v,, 'Fh)) V(Vh,, 4h) CWI,, 
{ b((u, ,Bh) X/Xh) = 0 VXh?. E SI/3. 

With the abstract results of [5] it is easy to prove that the linear problems both 
have a unique solution. We then have the following error estimate (for details an-d 
a proof, see [12]). 

Proposition 5.8. Let (U B) E H2 (Q) x H2 (Q), p E H' (Q) and (uh, B, ) e WC 
Ph E Sh be the unique solutions of problems (5.24) and (5.25). Then there is a 
constant c > 0, independent of h, such that 

(5.26) 11 (u, B) - (u1, Bh) IvV + IIP-Ph II1OQ ? ch{fl (u, B) IIH2(S2)XH2(5) + IIPI1 S,}. 

Here the degree of polynomials in Xh and yh is at least 1 and is equtal for both 
spaces; the degree of polynomials in So- is at least 0. In addition we require the 
inf-sup condition (5.6). D 

In Section 6 we derive an error estimate in the general nonlinlear case based on 
the error estimate (5.26). We refer to [9] for an error estimate in the case where 
both the continuous and the discrete nonlinear problems are uniquely solvable. 

6. ERROR ESTIMATES FOR THE NONLINEAR CASE 

For the derivation of error estimates in the general nionlinear case we follow the 
analysis of nonlinear problems in [2] and [5]. We deal with operator problems of 
the type 

(6.1) f Find w C X such that 
l~ F(A, w(A)) := w(A) + TG(A, w(A)) = 0. 

Here T: Y -* X is a continuous linear operator, G a 02-map from A x X to Y, X, Y 
two Banach spaces and A C 1R72 compact. WATe further denote by {(A, w(A)): A C Al} 
a regular branch of solutions of (6.1) if A h-* w(A) is a continuous function from 
A into X with F(A,w(A)) = 0 and in addition the derivate D2,F(A,w(A)) is an 
isomorphism of X into itself for each A C A. 
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We then approximate problem (6.1). For this purpose we choose finite-dimen- 
sional subspaces Xh, yh of X, Y and we approximate the operators T and G by 
Th E 1(yh, Xh) and Gh E C2(A x Xh, yh). Thus we obtain the discrete problem: 

(6.2) f 
Find wh E Xh such that 

{ t Fh(A, w, (A)) := Wh(A) + ThG (A,Wh(A)) = ? 

Remark 6.1. Our operator formulation is slightly different from the one in [5], be- 
cause we approximate not only the operator T, but also the nonlinear operator G. 
This is a consequence of the fact that we have approximated the boundary data 
g and q by finite element functions g, and qh. An analogous formulation can be 
found in [11] for an analysis of a streamline-diffusion finite element method for the 
Navier-Stokes equations. El 

Let us now define for our problems (3.5) and (5.4) the spaces X, Y, Xh, yh and 
the operators T, G, Th, G'. We start with 

X := V(Q) x L2(Q), Y:= Y1 x Y2, 

with 

Y, :H-1(Q) x (Hl(Q))/v 

Y {g* EH1/2(r): g*.n=O} X {q* EH/2(r): jq* =O}. 

Next, T denotes the continuous linear operator which maps a given ((fe ,f2*), 
(g*,q*)) E Y to the solution ((u*,B*),p*) = T(((fj, f2*), (g*) q*))) E X of the 
following linear problem (F* ((v, 'I)) := f (v) + f2* (T)): 

(6.3) 

fFind((u*, B*),p*) e X with u*= g* on ] and B* n= q* on ? such that 
ao ((u*, B *), (v, 4f)) + b ((v, IP), p*) = F* ((v, xF)) Vl(V, XF) EE )/Vn(Q), 

b((u*, B*), X) = 0 VX c Lo(Q). 

With the given data f, g, q and k of problem (3.5) we associate a C?-function G 
from ]R3 x X into Y, i.e., 

G: ((M, R7n) N), ((u, B),p)) -+ C (((M, R7n) N), ((u, B),p)) := ((G1, G2), (G3, G4)) 

with ((v, 'J) C VOn (Q)) 

(6.4) 

(GI := MN fQ[(U V)u] v-Rmf Q[(V x B) x B]v-M2Q f v, 

{ G2 Rm fQ[(V x xI) x B] u - M(k, Jpr)r, 
(G3, G4) (-g, -q). 

By setting 

F ((M, RMn) N), ((u, B), p)) :=((u, B), p) + TG ((M, R771) N), ((u, B), p)), 

we obtain the following operator problem: 

(6.5) 
f Find ((u, B), p) E Xsuch that 

)F((M, R7 N), ((u, B), p)) = 0. 
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Remark 6.2. By construction of the operators T and G it is clear that ((u, B),p) E 
X is a solution of problem (6.5) if and only if (u,B) E Wgq(Q),p E Lo(Q) is a 
solution of problem (3.5) with given data f, g, q and k. D 

Next we have to write our discrete problem (5.4) also as an operator problem. 
For this purpose we approximate the spaces and the operators T and G (see Re- 
mark 6.1). For the discrete spaces we choose 

Xh }= wh yh :=y x y2h 

with 

Y2 := gh E XIr' g gh n = O} x {(Th * n) Jr, Th E } 
~~~~~~ 

Also, we denote by Th an approximation of T which maps a given ((fl f2*)) 
(gh) q )) E yh with ((u4, B*),p*) = Th(((fl, f2*), (gh) qh))) e Xh to the solution 
of the following linear discrete problem (F* as in (6.3)): 

(6.6) 

[Find ((u ,B),p*) e Xh with u* = gh on r and B* . n = q* on r such that 

ao((u*, Bh), (Vh, *h)) + b((Vh, kh),P*) = F*((Vh,Ph)) V(Vh, *h) EC Wh 

I b((u*, B*), Xh) = 0 VXh E Sh 

Next we approximate the operator G by Gh: IR X Xh > yh Compared to the 
definition of (6.4), we only have to change the last two components by replacing g 
by gh and q by qh, i.e., 

(Gh) Gh) := (GI) G2)) (G3h,Gh) := (-9h, -qh)- 

Finally, we set 

Fh((M,Rm,N),((Uh,Bh),Ph)) := ((Uh,Bh),ph) + ThGh((M,Rm,N),((Uh,Bh),ph)) 

and obtain the discrete operator problem 

(6.7) f Find ((Uh, Bh), Ph) E Xh such that 
* l ~~~~Fh ((M) R,v N), ((Uh) B h))Ph)) = ? 

In order to derive an error estimate we need some additional notation. Set 
A := (M, Rm, N) EC A with A c R3 compact. We further assume that A h-> 

((UA, BA), pA) is a regular branch of solutions of problem (6.5) which satisfies the 
regularity condition (uA,BA) C H2(Q) x H2(Q),pA e H'(Q). We set 

V~(A) := I D2 F(A, ((UA, BA)),PA)) 1' I||L(X, X) < ?? 
and -: supEA -(A). Here, D2F denotes the derivative of F with respect to 

((u,B),p). We further define 

K: zmax{1, I(uA,BA) IIH2(Q)xH2(Q), IPA 1I,Q119g113/2,r%llqll3/2,rvllf f1o,:Q)JkJ1/2,r}. 

Finally, we assume that ((fih,ABh,A),J3h) E Xh is a suitable projection (for ex- 
ample with an operator of Clement's type [4]) of ((UA, B A), PA) E X. With this 
notation we obtain 

Theorem 6.3. Let A H-> ((UA, BA),PA) be a regular branch of solutions of the op- 
erator equation (6.5). Then there exists a real ho > 0 such that for each 0 < h < 
ho and each A E A the discrete operator problem (6.7) allows a unique solution 
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((Uh,,A, Bh,A),Ph, A) E X' in a neighboutrhood of ((fth,A, Bh,A),Ah,A). Furthermore, 
we have the error estimate 

(6.8) |(Uh,A-Bh,) -(UA,BA)WVV + j Ph,A-PAH1O0Q < ch 

with c := c(A, K). 

Proof. We set for abbreviation UA := ((uA,BA),pA), iith,A ((ft,A,Bh,,),Ah,A). 
With properties of the Clement operator, approximation- properties of gh, a pri- 
ori estimates for the discrete problem and the error estimate (5.26) for the linear 
problem, we have 

||Fh(A), hI) x F h(A4) - F(A,uA), X 

? 
Ilh,A - AIIAX + |T hG 

h 
(A\, ii,A) -X 

(6.9) + IT hG(A,ihA)-Th'G(A, UA) IX + |T hG(, A) - TG(A,uA) X 

? cjhK + c2hK + c3hK + c4hK2 

< c5hK2. 

Let w:= ((w, ), T) e X with llwllx = 1. We obtain 

D2F h(A,)ih A)W-D2F(/\,uA)w, 

- 1ThD2G(A) , W UA)w-WTD2G(,IX A)wflx 

< JITD2G h(A) , - )w-T?D2G(A, u, ,)yL x 

+ JIThD2G(A, u1>)w- TD2G(A4 ,h,A,)yyx 

+ JITD2G(A, u -TD2G(A, !!AiX 
<0 + cchK +c7hK 
< c8hK, 

and therefore 

(6.10) flD2F h(jA) - D2F(A,uA)HI(X <) ? c8hK. 

Obviously, 

(6.11) 

D2Fh(A,iih,) =D2F(A),UA)[I - D2F(A,UA_1(D2F(A,UA) - D2F (A, flh, A))]. 

Because of (6.10) we have, for 0 < h < h1 :=1/2-y*c8K, 

flD2F(A, uA)<(D2F(A,UA) - D2Fh(A,)ih<))fl(xx) ? -(A)c8hK < . 

Then we conclude that I - D2F(A,uA)>(D2F(A,uA) - D2Fh(A, h A)) is an iso- 
morphism with norm of its inverse < 2. Taking (6.11) into account, we obtain that 
D2F h(A, Uth,A) is an isomorphism with 

(6.12) flD2F'(\(A, UA)- K(xx) < 2'y(A). 

Analogous arguments yield, for v ((vi, i),Xi) E X, i = 1, 2, and w e X with 
llwllx 1 as above, 

JD2F h(A, v,)w - D2F'(A, V2)WIIX 

(6.13) T ThD2Gh (A, v1)w-ThD2G7(A, v2)wlx 

< ?C911V - V2 1X- 
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Take 0 < h < h1. For vh := ((Vh,)Ih)),xh) EC Xh we define 

.f: Xh -- Xh, F(T D-' 
sT xh,, xh (Vh,) := Vh-D2Fh'(A,ufthA) lF(A) Vh). 

It is obvious that we have a fixed point of T if and only if it is a solution of the 
operator equation (6.7). 

From (6.9), (6.12) and (6.13) we conclude the existence of a real ho > 0 such 
that for each 0 < h < ho the map 1 is a contraction on the set B(uh A, R) with 
R = R(h, A). Consequently, applying Banach's fixed point theoremn, we obtain the 
existence of a unique solution UXh,= ((Uh A, B h , ), Ph, A) E B (ih A, R) of problem 
(6.7). The error estimate (6.8) follows with the triangle inequality and interpolation 
estimates (see [11]). Cl 
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